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ABSTRACT

We study the detailed structure of galaxies at redshifts z ≥ 2 using cosmological simulations with
improved modeling of the interstellar medium and star formation. The simulations follow the forma-
tion and dissociation of molecular hydrogen, and include star formation only in cold molecular gas.
The molecular gas is more concentrated towards the center of galaxies than the atomic gas, and as
a consequence, the resulting stellar distribution is very compact. For halos with total mass above
1011 M�, the median half-mass radius of the stellar disks is 0.8 kpc at z ≈ 3. The vertical structure of
the molecular disk is much thinner than that of the atomic neutral gas. Relative to the non-radiative
run, the inner regions of the dark matter halo change shape from prolate to mildly oblate and align
with the stellar disk. However, we do not find evidence for a significant “dark disk” of dark mat-
ter around the stellar disk. The outer halo regions retain the orientation acquired during accretion
and mergers, and are significantly misaligned with the inner regions. The radial profile of the dark
matter halo contracts in response to baryon dissipation, establishing an approximately isothermal
profile throughout most of the halo. This effect can be accurately described by a modified model of
halo contraction. The angular momentum of a fixed amount of inner dark matter is approximately
conserved over time, while in the dissipationless case most of it is transferred outward during mergers.
The conservation of the dark matter angular momentum provides supporting evidence for the validity
of the halo contraction model in a hierarchical galaxy formation process.
Subject headings: cosmology: theory — galaxies: evolution — galaxies: formation — methods: nu-

merical — stars: formation

1. INTRODUCTION

With the ever increasing computer power and so-
phistication of algorithms, dissipationless cosmological
simulations produced a consistent picture of the large-
scale structure formation in the ΛCDM cosmology (e.g.
Springel et al. 2005; Conroy et al. 2006; Boylan-Kolchin
et al. 2009; Teyssier et al. 2009) as well as the detailed
structure of individual objects (e.g. Diemand et al. 2008;
Springel et al. 2008; Stadel et al. 2009). In these pure
dark matter simulations, halos have a nearly universal
density profile with a steep inner cusp (e.g. Dubinski &
Carlberg 1991; Navarro et al. 1996, 2010; Diemand et al.
2005), their overall shape is triaxial (e.g. Frenk et al.
1988; Katz 1991; Bailin & Steinmetz 2005; Allgood et al.
2006; Bett et al. 2007), and they exhibit a complex hi-
erarchy of substructure (e.g. Moore et al. 1999; Klypin
et al. 1999; Ghigna et al. 2000; Diemand & Kuhlen 2008;
Zemp et al. 2009; Vogelsberger et al. 2009; Vogelsberger
& White 2011).

Important missing ingredients in these dissipationless
simulations are the physics of cosmic gas and the forma-
tion of stars. In the large-scale structure simulations, it is
an appropriate approximation to neglect cooling and star
formation, since on these scales gravity is the only dy-
namically relevant force. But on smaller scales it is nec-
essary to include baryonic physics in order to resolve the
internal structure of dark matter halos correctly since the
condensation of baryons alters the phase-space structure

mzemp@umich.edu

of all matter components (e.g. Dubinski 1994; Gnedin
et al. 2004; Kazantzidis et al. 2004; Gustafsson et al.
2006; Debattista et al. 2008; Pedrosa et al. 2010; Knebe
et al. 2010; Duffy et al. 2010; Tissera et al. 2010; Abadi
et al. 2010).

The processes of star formation and its feedback on the
interstellar medium are complex in nature and not well
understood. Hence, often crude, empirical prescriptions
have been used in order to model these processes in sim-
ulations. A common example is a Kennicutt-Schmidt-
type recipe based on the total gas mass density ρG on

small scales of the form ρ̇S ∝ ρ
3/2
G . Fine tuning is then

achieved with the help of threshold criteria (e.g. for tem-
perature and/or density) in order to reproduce the ob-

served Kennicutt-Schmidt relation, Σ̇S ∝ Σ1.4
G (Schmidt

1959; Kennicutt 1998), where Σ̇S is the star formation
rate surface density and ΣG is the total gas surface den-
sity (see Schaye & Dalla Vecchia 2008 and Mayer et al.
2008 for recent reviews).

Recent observations indicate that the Kennicutt-
Schmidt relation shows more complexity that cannot
be captured by a single power law over a wide range
of total gas surface densities (Leroy et al. 2008; Bigiel
et al. 2008) and that the star formation rate surface den-
sity correlates better with the surface density of molec-
ular hydrogen, ΣH2 (Wong & Blitz 2002; Genzel et al.
2010; Bigiel et al. 2011). The complex behavior of the
Kennicutt-Schmidt relation as a function of the total
gas surface density can be understood if star formation
only happens in regions where the gas is predominantly
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TABLE 1

Simulation Non-equilibrium Star Supernova Supernova
cooling formation metal enrichment thermal feedback

A yes yes yes yes
ANF yes yes yes no

B no no no no

in the molecular rather than atomic phase (Kravtsov
2003; Pelupessy et al. 2006; Robertson & Kravtsov 2008;
Pelupessy & Papadopoulos 2009; Krumholz et al. 2009;
Gnedin et al. 2009; Gnedin & Kravtsov 2010). While this
is still a working hypothesis, theoretical studies demon-
strated that the transition from the atomic to molecular
gas may also correspond to the conditions under which
gas becomes susceptible to gravitational fragmentation
(Krumholz et al. 2011; Glover & Clark 2011). Hence, in
order to realistically model star formation in simulations,
it is necessary to follow the formation and dissociation of
molecular hydrogen in the galactic interstellar medium.

In this paper we study the formation of high-redshift
galaxies, using new state-of-the-art modeling of galactic
interstellar medium and star formation. We use the phe-
nomenological molecular hydrogen modeling introduced
in Gnedin & Kravtsov (2011) and a star formation recipe
based on the density of molecular hydrogen. With these
simulations we explore the impact of baryons on the
structure of the dark matter halos, important for many
current observational studies. We investigate the shape
of dark matter halos as a function of radius, important
for gravitational lensing studies; the response of the ra-
dial halo profile to central condensation of baryons, for
studies of the Tully-Fisher and other galactic scaling re-
lations; the alignment of dark halos and stellar disks; and
the distribution and evolution of the angular momentum
of dark matter.

2. SIMULATIONS

2.1. Initial conditions

We run cosmological simulations of a periodic box with
comoving length Lbox = 25.6h−1 Mpc. We adopt a
ΛCDM cosmology with a total matter density parameter
ΩM,0 = 0.28, dark matter density ΩDM,0 = 0.234, baryon
density ΩB,0 = 0.046, cosmological constant ΩΛ = 0.72,

Hubble parameter H0 = 100h km s−1 Mpc−1, with h =
0.7, linearly extrapolated normalization of the power
spectrum σ8 = 0.82, and spectral index ns = 0.96, con-
sistent with the Wilkinson Microwave Anisotropy Probe
7-year data (Jarosik et al. 2011).

The initial conditions were generated taking into ac-
count a non-zero DC mode (Sirko 2005; Gnedin et al.
2011a). The DC mode corrects for a possible deviation
of the average matter density in the box from the univer-
sal value, arising from the finite simulation volume. It
is equivalent to having a constant overdensity at redshift
z = 0 of δDC,0 ≡ ρ̄box,0/ρ̄uni,0 − 1. In general, the DC
mode denotes an offset of the mean of a signal or wave-
form from zero. Usually, it is common practice to ignore
the DC mode, but this is already a constraint on the ini-
tial conditions and therefore the initial conditions are not
a truly random realization. The positions and velocities
of particles are determined by the usual Zel’dovich ap-

proximation (Zel’dovich 1970; Klypin & Shandarin 1983;
Efstathiou et al. 1985).

First, we ran 5 low resolution (2563 particles) ran-
dom realizations of the cosmological box. In these low-
resolution simulations, we only simulate dissipationless
evolution with an N-body code PKDGRAV2 (Stadel
2001). We then selected a representative box that had
the mass function of halos at redshift z = 0 closest to
that expected for the whole universe (e.g., Sheth & Tor-
men 1999).

This box has a DC mode of δDC.0 = 0.571. In this se-
lected box we chose to refine 7 objects in the mass range
M200b ≈ 1011 − 1013 M� at z = 0 (see also Figure 2).
M200b is the mass within r200b such that the enclosed
density is 200ρb, with ρb being the background matter
density. The selected objects had a quiet merger history
after z ≈ 2 but apart from that, they were selected ran-
domly by visual examination. We used the traditional
method of refining a region of interest with a large num-
ber of dark matter particles and leaving the rest at lower
resolution so that we correctly account for the large-scale
tidal forces (Katz 1991; Bertschinger 2001). Around the
7 selected objects we refined a region of 5 r200b with an ef-
fective dark matter resolution of 20483, i.e. the high reso-
lution dark matter particles have a mass of 1.81×105 M�.
In the surrounding region, we increased the dark mat-
ter mass in buffer zones by factors of 23 = 8 until we
reached the initial low resolution level. For the thickness
of the buffer zones we chose 3 lengths of the top-level
cells (3L0), where L0 = Lbox/256 = 143 kpc (comoving).

The gas was initialized following the same refinement
pattern with the baryonic power spectrum. The initial
composition of the gas is primordial, i.e. a hydrogen
mass fraction X = 0.76, helium mass fraction Y = 0.24,
and metal mass fraction Z = 0. Further, we set XH ii =
1.2×10−5

√
ΩM,0/(ΩB,0h) X = 1.5×10−4 (Peebles 1993,

equation 6-119), XH2 = 2×10−6 X = 1.52×10−6 (Ricotti
et al. 2001), and XH i = X −XH ii−XH2

. All the helium
is initially in the form of He i, i.e. YHe i = Y , YHe ii = 0,
YHe iii = 0.

The starting redshift of the refined initial conditions
was determined by the criterion that the root mean
square of the density fluctuations is 0.1, which resulted
in zIC = 108.

2.2. Input physics

The simulations were run with the latest version of
the gas dynamics and N -body Adaptive Refinement
Tree (ART) code (Kravtsov et al. 1997; Kravtsov 1999;
Kravtsov et al. 2002; Rudd et al. 2008). The Poisson
and fluid equations are solved in super-comoving coordi-
nates using cell-based adaptive mesh refinement (AMR)
techniques (Kravtsov et al. 1997, 2002). ART includes
3-dimensional radiative transfer of ultraviolet (UV) ra-
diation from individual stellar particles and from the ex-
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Fig. 1.— The disk of the most massive galaxy at z ≈ 3 (the main halo) in simulation A in face-on (left panel) and edge-on (right panel)
view. The molecular hydrogen is shown in red, atomic gas (H i and He i) in blue. The stars (yellow points) only form in the region where
the molecular gas resides. The linear size of the image is ≈ 14 kpc (physical).

tragalactic background (modeled according to Haardt &
Madau 2001) using the Optically Thin Variable Edding-
ton Tensor approximation (Gnedin & Abel 2001). It in-
cludes a non-equilibrium chemical network for hydrogen
(H i, H ii, and H2) and helium (He i, He ii, and He iii) as
well as non-equilibrium cooling and heating rates, which
use the local abundances of atomic, molecular, and ionic
species and the local UV intensity (Gnedin & Kravtsov
2011). All these reactions are followed self-consistently in
the course of a simulation. An empirical model for the
formation and shielding of molecular hydrogen on the
interstellar dust allows for more realistic star formation
recipes based on the local density of molecular hydrogen
(Gnedin & Kravtsov 2011). ART also includes metal en-
richment and thermal feedback due to the Type II and
Type Ia supernovae (Kravtsov 2003).

The local star formation rate volume density ρ̇S in a
cell is calculated as

ρ̇S = εff
ρH2

τsf
(1)

where ρH2
is the local mass density of molecular hydro-

gen. The star formation time scale is given by

τsf = min[τff(ρG), τmax] (2)

where τff = (32GρG/3π)−1/2 is the free-fall time, and
ρG the local gas density (including all hydrogen and he-
lium species). The maximum timescale τmax is set to the
free-fall time of gas with a hydrogen number density of
nH = nH i + nH ii + 2nH2 = 50 cm−3. The star formation
efficiency per local free-fall time is set to εff = 0.007.
To ensure that star formation happens only in our nu-
merical analogs of real molecular clouds, we allow star
formation only in cells with the molecular mass fraction
above fH2 = 2nH2/nH = 0.1. These cells have a range of
total gas density from 50 to 104 amu cm−3 for the main
halo at z ≈ 3 (Figure 1). Stellar particles are created

via a Poisson process with a characteristic timescale of
2× 107 yr. This star formation prescription is similar to
the recipe SF2 in Gnedin et al. (2009).

Figure 1 shows the disc of the most massive galaxy in
our simulation at z ≈ 3, which we call the main halo.
The molecular hydrogen forms only in high density re-
gions and hence the stars are confined to these central
regions. In traditional star formation prescriptions based
on the total gas density instead of the molecular hydro-
gen density, stars would be formed over a much larger
volume filled with the lower-density atomic gas.

We ran three versions of the simulation, which are
summarized in Table 1. Simulation A is a full physics
run with radiative transfer and non-equilibrium cooling.
Simulation ANF is the same as simulation A but with-
out supernova thermal feedback. Metal enrichment due
to supernovae is still included. Simulation B is a non-
radiative version without cooling and star formation.

In all simulations, the top level l = 0 grid is 2563 and
we allow for up to 9 more refinement levels (lmax = 9)
where each higher level is refined by a factor 2 with re-
spect to the parent level. This results in a size of the
smallest cells L9 = Lbox/(256 · 29) = 279 pc (comov-
ing). A cell is refined if its dark matter or gas mass
exceeded 1.07× 106 M� or 1.33× 105 M�, respectively.
For the dark matter, this threshold corresponds to the
mass of about 6 high resolution particles. On each re-
finement level l, the time step is refined as well accord-
ing to ∆νl = ∆ν0/2

l, where ∆ν0 is the global time step
on the top level mesh. The value of ∆ν0 is set at the
beginning of each top level step so that the Courant-
Friedrichs-Lewy condition (Courant et al. 1928, 1967) is
fulfilled on all levels (Kravtsov et al. 2002). In total our
simulation A contains 2.89 × 108 dark matter particles
and 3.89× 108 gas cells at z ≈ 2.

2.3. Halo selection
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Fig. 2.— Masses of the selected halos at redshifts z ≈ 4, 3 and
2 in simulation A, as well as the final host halos at z = 0 from the
N-body simulation. The median mass at each epoch is indicated
by a circle. The lower selection cutoff is a fixed mass of 1011 M�,
which results in different number of objects at different epochs.

For the analysis presented in this paper, we mainly
concentrate on three snapshots at redshifts around 4, 3,
and 2 (the exact redshifts are 3.76, 2.85, and 2.03) in
run A. These epochs correspond to 1.69 Gyr, 2.32 Gyr,
and 3.29 Gyr after the Big Bang in our cosmology. The
output redshifts for different runs match to within ∆z =
0.005.

Simulation ANF at full resolution was stopped at z =
2.77 to save computing time. We ran also a lower-
resolution version of ANF with the 8 times more massive
dark matter particles but otherwise the same gas physics
and parameters. We use the z ≈ 2 snapshot from this
version in our analysis.

In all snapshots we ran a variant of the Bound Density
Maxima halo finder (Kravtsov et al. 2004) and selected
all massive objects with M200b ≥ 1011 M� in the high
resolution region of run A. We then matched simulation
A with the other two simulations in order to find the cor-
responding halos in these runs. The matching procedure
is not a trivial task since the dynamics in the various runs
is different and the output epochs do not match exactly
(e.g. halos already could have merged at a given time).
A simple matching scheme based on comoving position
and mass is not always successful, though it gives a rea-
sonable initial guess. We therefore check all the matches
by eye and repair possible misidentifications. This pro-
cedure is rather cumbersome but absolutely necessary in
order to get quantitatively reliable results. We only use
halos where we could clearly identify a match in all three
simulations. There are 12, 16, and 16 objects (from a
total of 16, 22, and 26 objects with M200b ≥ 1011 M�)
at redshifts ≈ 4, 3, and 2, respectively, that fulfill our
selection and quality criteria (see Figure 2).

2.4. Spatial resolution

The force resolution in ART is roughly 2 cell sizes
(Kravtsov et al. 1997) but numerical relaxation processes
could affect the structure of halos on even larger scales.
In order to estimate the scale where numerical effects
become important, we use the local relaxation time at

radius r

trel(r) ≡
N(r)

ln[N(r)]
tdyn(r) (3)

with

tdyn(r) ≡ 2π

√
r3

GM(r)
(4)

where N(r) is the enclosed number of collisionless parti-
cles (dark matter and stars), and the dynamical time is
set by the total enclosed matter (including gas), M(r).
Here we use a slightly different normalization than in
the usual expression for the local relaxation time (e.g.,
Power et al. 2003) since we dropped the factor of 8 in
front of the logarithmic term in the denominator. Zemp
et al. (2008) found that this normalization agrees better
with the results of N-body simulations, where they stud-
ied the stability of isolated high-resolution halos. Re-
laxation processes become important on the scale rrel at
time t given by the solution of trel(rrel) = t.

We checked for all our selected objects that rrel ≈
2 − 4 L9. Generally, dissipative runs A and ANF have
a smaller relaxation scale than run B, due to the higher
number of particles within a given radius. Therefore, we
estimate that our results are numerically converged on
scales larger than rres = 4 L9 = 1.12 kpc (comoving).
We mark the resolution scale rres in all the plots where
appropriate.

2.5. Median properties

In the following sections, we present halo properties
that were calculated using a profiling routine described
in the Appendix. We calculate the median value of each
property for all selected halos as a function of radius.
In order to display the spread among individual halos,
we also calculate the region between the 15th and 85th
percentile values, i.e. the region containing 70 percent
of the halos. This is the spread specification throughout
the paper, unless otherwise noted.

The median values are a useful representation because
the selected objects are all similar, with the mass span
of at most of an order of magnitude. The most massive
halo in run A at the three epochs (which is not the same
halo) has M200b = 5.66 × 1011 M�, 8.77 × 1011 M�,
and 1.75 × 1012 M� at z ≈ 4, 3, and 2, respectively
(Figure 2). The median mass and the 15th and 85th
percentiles of the 12, 16 and 16 objects at these epochs
are M200b = 1.7+0.8

−0.4 × 1011 M�, 2.7+2.7
−1.3 × 1011 M�, and

3.3+5.3
−2.0×1011 M�, respectively. The median virial radius

and the percentiles are r200b = 35+5
−3 kpc, 50+13

−11 kpc, and

67+25
−18 kpc, respectively. The final masses at z = 0 of the

7 host halos are M200b = 1.6+2.4
−0.6 × 1012 M�.

3. SPHERICALLY AVERAGED PROPERTIES

3.1. Density profile

In order to get a first impression of the impact of
baryon physics on the overall matter distribution, we
show in Figure 3 the local mass density ρ and in Fig-
ure 4 the local density slope γ(r) ≡ −d log ρ/d log r. We
normalize the radii of each halo by r200b,A, the virial
radius of this halo in run A. With this choice we al-
ways compare the same physical scale of a specific halo
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Fig. 3.— Median local mass density as a function of radius for the
dark matter (top panel) and baryons (bottom panel) at z ≈ 2. We
plot the quantity ρr2 in order to reduce the dynamical range. The
shaded areas mark the region containing 70 percent of the halos.
The median resolution scale is marked with a vertical dashed line.
The three simulations are described in Table 1.

in all three different simulations and avoid complica-
tions arising from the slightly different values of r200b

in the three runs. The densities are normalized by
ρ̄200b ≡ 3M200b/4πr

3
200b = 200ρb. In order to reduce the

dynamical range, we plot the quantity ρr2 in Figure 3.
The most obvious difference is in the distribution of

the baryons. While in the non-radiative case the baryons
form an approximately constant density core, they form
a steep density profile with γ ≈ 3.5 in the center for the
cases A and ANF. The central region is dominated by
the stars.

In the non-radiative case B, the dark matter density
profile is roughly proportional to r−1 near the center,
in agreement with other dissipationless simulations (e.g.
Dubinski & Carlberg 1991; Navarro et al. 1996; Diemand
et al. 2005, 2008; Stadel et al. 2009; Navarro et al. 2010).
In all three cases, the slope at the virial radius is γ ≈ 2.5.
It is expected to be less than 3 because of the lower con-
centration of high-redshift halos relative to the their low-
redshift counterparts. In the runs with star formation,
the dark matter has a roughly isothermal inner density
profile with γ ≈ 2. The central dark matter density in-
creases by over an order of magnitude compared with the
non-radiative case.

3.2. Enclosed mass fraction

Figure 5 shows the local enclosed mass fraction
M/Mtot of the different matter species in simulation A.
The fractions sum up to unity at each radius. Gener-
ally, the stars dominate in inner 5% of the virial radius
(about 3 kpc), while the dark matter dominates in the
outer parts of the halo. The gas mass near the center is
typically higher than the dark matter mass.

An interesting feature is the much smaller scatter of
the combined baryon profile than of the gas or stellar
component separately. The star formation history varies
from object to object, but whenever the stellar density
is higher than the median value the gas density is lower
by a similar amount, and vice versa. This is encouraging
for our study. While our modeling of the star formation

10-2 10-1 100

r/r200b,A

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

γ

A Total Matter
A Dark Matter
B Dark Matter

Fig. 4.— Median local mass density slope as a function of radius
for the dark matter in simulations A and B as well as for the total
matter in simulation A, at z ≈ 2. The shading is as in Figure 3.

rate and feedback may not be exactly right, the effect of
the baryon dissipation on the dark matter properties is
calculated more robustly.

The universal baryon fraction in our simulations is
ΩB,0/ΩM,0 = 0.164. In general, we find that the median
baryon fraction within the virial radius, fB(r200b,A), is
higher than universal at all times (by ≈ 5 − 15%) for
the runs with cooling and star formation but lower than
universal (by ≈ 5%) for the non-radiative case. Also,
fB(r200b,A) generally increases with time, up to 15%
above the universal fraction at z = 2. The halos in
the simulations without supernova feedback can retain
slightly more baryons than the halos in the simulations
with supernova feedback. But the effect is relatively weak
(between 2% and 9%) and within the scatter among in-
dividual halos.

These mass fractions should only be used for a qualita-
tive comparison between the different simulations. There
is nothing special about our choice of r200b,A as the
length scale. A smooth halo profile extends much fur-
ther (we plot it out to two virial radii), and in general
an edge of a halo is ill defined (see also, e.g., Prada et al.
2006; Cuesta et al. 2008).

3.3. Concentration

In order to describe the more concentrated matter dis-
tribution in the simulations with cooling and star for-
mation, we use an intrinsic and general measure for the
concentration of a halo. It is the enclosed density within
the radius rmax (location of the peak of the circular ve-
locity curve Vmax) in units of the critical density at z = 0:

cV ≡
ρ̄(rmax)

ρc,0
= 2

(
Vmax

H0 rmax

)2

. (5)

This concentration measure has the advantage that it
is well defined both for isolated halos and subhalos (as
long as the peak of the circular velocity curve can be
found) and it does not make any assumptions about a
specific shape of the density profile (Alam et al. 2002;
Diemand et al. 2007). In principle, cV can be derived
from observable quantities. An alternative interpretation
is that cV is related to the number of rotations, Nrot, at
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Fig. 5.— Median enclosed mass fraction M/Mtot at three epochs in simulation A. The median baryon fraction within r200b,A, fB(r200b,A),
is marked with a circle and the value is given in the plot. The median resolution scale is marked with a vertical dashed line and the shaded
areas mark the region containing 70 percent of the halos.
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Median

Fig. 6.— Comparison of halo concentrations cV in runs A and B
at the three epochs, computed using the dark matter distribution
alone. Circles show the median concentration of all halos at a given
epoch. Dashed diagonal line corresponds to the equality relation.

rmax per Hubble time, 1/H0, by

Nrot =
Vmax

2πrmaxH0
=

√
cV
8π2
≈ 0.113

√
cV . (6)

Another common measure for a halo concentration is
the virial concentration cvir ≡ rvir/rs, where rs is a char-
acteristic scale radius. The virial concentration has two
main drawbacks: i) cvir grows even when the inner mass
distribution remains constant, due to the comoving def-
inition of the virial radius, and ii) cvir is not well de-
fined for subhalos. If an analytical halo density profile is
known, it is straightforward to calculate the mapping be-
tween cV and cvir. In the case of an NFW profile (Navarro
et al. 1996) see for example Figure 5 in Diemand et al.
(2007). However, in dissipative simulations dark matter
no longer follows the NFW profile (the inner parts are
modified more than the outer parts) and cV is a more
useful measure of halo compactness.

Figure 6 shows the concentrations of the objects in
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Fig. 7.— Ratio of the enclosed dark matter mass in the radiative
to the non-radiative runs (top panel) and the individual radial
profiles M/M(r200b,A) (bottom panel) at redshift z ≈ 2.

run A versus the concentrations in run B. Here we de-
termine Vmax using the dark matter profile only, because
the total matter distribution is very concentrated and
its peak circular velocity is reached below the resolved
scale in runs A and ANF. Gas cooling and star forma-
tion lead to much higher halo concentrations than in the
non-radiative case, by a factor of 10 to 10,000. We also
find that the median concentration of the selected halos
gradually decreases with time.

While the concentration cV is only sensitive to the mat-
ter distribution within rmax, the processes of gas cooling
and star formation affect the dark matter profile through-
out the whole halo (see also Rudd et al. 2008; Abadi et al.
2010). This is illustrated in Figure 7, where we plot the
median enclosed mass fraction M(r)/M(r200b,A). The
dark matter is enhanced by a factor of around 2 at
≈ 0.1 r200b,A, and by a still noticeable amount out to
a large fraction of the virial radius.

These results indicate that the effects of baryon con-
densation are not confined to the regions dominated by
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Fig. 8.— Median total velocity dispersion as a function of radius
for the dark matter (top panel) and stars (bottom panel) at z ≈ 2.
Stars dominate the mass in the inner 0.07 r200b,A, but the dark
matter dispersion is affected at even larger radii.

stellar mass and also lead to subtle (but non-negligible)
changes in the mass distribution at larger radii. A sim-
ilar effect is also seen in the change of shape, which we
discuss in Section 4.

3.4. Velocity distribution

In Figure 8, we show the total 3D velocity dispersion
σtot for the dark matter and stars. In the non-radiative
simulation, the dark matter shows a typical velocity dis-
persion inversion (σtot drops towards the center) that is
well known from dissipationless simulations. However,
in the runs with cooling and star formation the central
velocity dispersion of dark matter increases by a factor
4 − 5 and displays a strong negative gradient. Such a
strong increase is due to the concentrated stellar bulge
and disk, which dominate the gravitational potential in
the inner regions.

In order to gain insight into the velocity structure of
the halos, we calculate the velocity anisotropy parameter

β ≡ 1− σ2
tan

2σ2
rad

(7)

with σrad and σtan being the radial and tangential ve-
locity dispersions. We find that in run B the dark mat-
ter has the usual anisotropy profile known from N-body
simulations (e.g. Navarro et al. 2010): close to isotropic
in the center while becoming more radially anisotropic
with radius, with a sharp change towards tangential
anisotropy around r200b,A (see Figure 9). In contrast, in
our simulation with cooling and star formation the veloc-
ity structure is much closer to isotropic over a large radial
range. In the inner regions, around 0.01−0.03 r200b,A, the
dark matter becomes slightly tangentially anisotropic, as
it shares the rotation of the stars and gas (and changes
its shape, see Section 4). Only in the outer parts does
the velocity dispersion remain radially anisotropic.

3.5. Pseudo phase-space density

In dissipationless N-body simulations, the combination
of local mass density, ρ, and local velocity dispersion, σ,
is shown to follow a power-law over the whole resolved
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Fig. 9.— Median anisotropy parameter as a function of radius
for the dark matter at z ≈ 2.

range of radii: ρσ−3 ∝ r−α, with α = 1.875 − 1.94 (e.g.
Bertschinger 1985; Taylor & Navarro 2001; Rasia et al.
2004; Ascasibar et al. 2004; Dehnen & McLaughlin 2005;
Hoffman et al. 2007; Schmidt et al. 2008; Stadel et al.
2009; Vass et al. 2009; Navarro et al. 2010). The quantity
Q ≡ ρσ−3 is called the “pseudo phase-space density”
and can be generalized by using different types of the
velocity dispersion (total, radial, or tangential) and by
treating the power of the velocity dispersion as a free
parameter. Schmidt et al. (2008) showed that the value
of the slope α depends on these definitions and that, in
general, no universal pseudo phase-space density relation
exists. Also, the spherically averaged true phase-space
density does not show such a perfect power law behavior
(Stadel et al. 2009; Vass et al. 2009).

Here we investigate how the pseudo phase-space den-
sity of dark matter is affected by baryon dissipation. For
illustration, Figure 10 shows the values of Q defined us-
ing the radial velocity dispersion. In the dissipationless
run B we confirm the power law behavior found in pre-
vious studies. The best-fit slope between the resolution
radius and r200b,A is α = 1.97 at z ≈ 2. The slope re-
mains essentially constant with time: α = 1.96 at z ≈ 3,
and α = 1.91 at z ≈ 4, in agreement with the results of
Hoffman et al. (2007) and Vass et al. (2009). Qualita-
tively similar results emerge when using the tangential
or total velocity dispersion in the definition of Q. The
slope α progressively increases from using σtan to σtot to
σrad, similar to the findings of Hansen et al. (2006) and
Schmidt et al. (2008).

However, the pseudo phase-space density is dramati-
cally reduced in the simulation with gas cooling and star
formation, by more than a factor of 10 near the cen-
ter. The effect is significant all the way to the virial
radius, with the sharpest kink at ≈ 0.1 r200b,A. A single
power law no longer holds in any radial range. Similar
results were obtained also by Tissera et al. (2010). Such
a strong reduction is due to the increased velocity dis-
persion of dark matter in the regions dominated by stars
and gas, despite the density also increasing (Figure 3)
but by a smaller amount. Since the velocity dispersion
depends on the details of star formation and feedback,
which vary from galaxy to galaxy, our results imply that
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Fig. 10.— Pseudo phase-space density of dark matter as a func-
tion of radius at z ≈ 2. In order to reduce the dynamical range we

plot the quantity ρσ−3
radr

2, similarly to Figure 3. As a guidance, the
dashed line shows the power law with α = 15/8 = 1.875, expected
from the secondary collapse models (Bertschinger 1985).

the pseudo phase-space density profile of dark matter in
galaxies is not universal.

4. TRANSFORMATION OF DARK MATTER HALO
SHAPE

In this section, we discuss the local shape variation of
the mass distribution, i.e. the shape as a function of
distance r from the halo center. We use an iteration
method (e.g. Katz 1991; Dubinski & Carlberg 1991) and
start with a spherical shell with middle radius r. We
take logarithmically spaced shells with 7.5 bins per dex
in radius. Then we calculate the shape tensor S with the
elements

Sij =

∑
kmk(rk)i(rk)j∑

kmk
(8)

where summation is over all particles within that shell,
and (rk)i is the i component of the position vector rk
(with respect to the halo center) of a particle/cell k with
mass mk. By diagonalizing S we obtain the eigenvec-
tors and eigenvalues at radius r. The eigenvectors give
the directions of the semi-principal axes. The eigenval-
ues of S of an infinitesimally thin ellipsoidal shell are
equal to a2/3, b2/3, and c2/3, where a, b, and c are the
semi-principal axes, with a ≥ b ≥ c. Hence, the square
roots of the eigenvalues are proportional to the lengths of
the semi-principal axes. We then keep the length of the
semi-major axis fixed (but the orientation can change)
and recalculate S by summing over all particles within
an ellipsoidal shell with semi-major axis a = r and axis
ratios b/a and c/a, but with the new orientation. This
iteration is repeated until convergence is reached. As a
convergence criterion we require that the fractional dif-
ference between two iteration steps in both axis ratios is
smaller than 10−3. When referring to the radius or dis-
tance from the center for an ellipsoidal shape, we always
mean the semi-major axis a.

There are many other methods for shape determination
used in the literature. We present tests and comparisons
in a companion paper (Zemp et al. 2011), which further
motivates our choice of procedure, since other methods

can lead to a significant bias in the measured shape. For
measuring the halo shape it is essential to exclude all
particles that are in subhalos. Not removing subhalo
particles can lead to artificially low axis ratios (spikes)
at the location of the subhalos (see also Zemp et al. 2011).

4.1. Axis ratios: from prolate to oblate

In Figure 11, we show the median axis ratios b/a and
c/a as well as the triaxiality parameter

T ≡ 1− (b/a)2

1− (c/a)2
(9)

for the different matter components at z ≈ 2. Ellipsoids
are called oblate if 0 ≤ T ≤ 1/3, triaxial if 1/3 < T <
2/3, and prolate if 2/3 ≤ T ≤ 1.

In the non-radiative case B, the dark matter shows the
well known behavior from N-body simulations where the
halo shape is relatively round near the virial radius but
becomes progressively prolate (i.e. c ≈ b < a) towards
the center, reaching b/a ≈ 0.55 and c/a ≈ 0.4 (see also,
e.g., Bailin & Steinmetz 2005; Allgood et al. 2006; Stadel
et al. 2009).

In the dissipative case A, the dark matter shape is
much rounder at the center: b/a ≈ 0.95 and c/a ≈ 0.8,
and the overall shape is oblate instead of prolate. Such
transformation has been seen in previous studies (e.g.,
Katz & Gunn 1991; Evrard et al. 1994; Dubinski 1994;
Kazantzidis et al. 2004; Tissera et al. 2010; Lau et al.
2011). In particular, Abadi et al. (2010) find very similar
axis ratios in their smooth particle hydrodynamics (SPH)
simulations: b/a ≈ 0.95, c/a ≈ 0.8− 0.9. The change in
the shape with radius is gradual and is best demonstrated
by the triaxiality parameter T , which steadily decreases
from T ≈ 0.8 outside the virial radius to T ≈ 0.2 at the
center.

The baryons in run A form a strongly flattened dis-
tribution. The gas settles into a rather thin disk, with
c/a ≈ 0.2 (which includes the hot and warm gas phases;
the cold gas disk is still thinner – see Figure 1), as op-
posed to an almost prolate elongated shape in run B
without dissipation. The stars also form an oblate disc
structure, with a minimum c/a ≈ 0.3, although it is not
as thin as the gaseous disk. The stellar particles ex-
perience gravitational scattering from fluctuation of the
potential as soon as they form and therefore diffuse away
from the plane of the disk. Near the center, the stellar
distribution becomes less flattened as the disk transitions
into a bulge. The shape of the stellar distribution in the
outskirts of the halo has a large scatter because of the
low particle number and is not meaningful.

The shape of the total matter distribution is then a
consequence of the combination of the individual mat-
ter component shapes and their relative importance as
a function of radius (shown in Figure 5). In the dis-
sipative run A, the shape is approximately round at
r > 0.1 r200b,A, but sharply turns oblate at the inner
radii where baryons dominate the mass (see also Knebe
et al. 2010). In the innermost region, the matter dis-
tribution is determined by the more round bulge. This
detailed shape structure of the mass distribution is im-
portant for accurate modeling of the strong gravitational
lensing effect due to massive elliptical galaxies, which we
discuss in Section 7.
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Fig. 11.— Median axis ratios b/a (top row) and c/a (middle row) as well as the triaxiality parameter T (bottom row) for the different
matter components of the halos at z ≈ 2 as a function of radius.

Over the three epochs that we investigate in detail, we
do not find any significant changes in the overall shape of
the matter distribution. Generally, the shape converges
farther from center than the density profile. For example,
Stadel et al. (2009) found that the convergence radius for
the shape in a pure N-body simulations was a factor 3
larger than the convergence radius for the density pro-
file. One should keep this in mind when interpreting the
results in Figure 11.

4.2. Twisting of the halo orientation

Why does baryon dissipation change the shape of the
dark matter distribution so drastically at the center?
One intuitive interpretation is that dark matter particles
respond to the flattened gravitational potential near the
disk and transform their orbital structure. Low-angular
momentum box orbits may be replaced by more round
tube orbits. Indeed, we show later in Figure 15 that the
average angular momentum of dark matter particles at
the center increases by a factor of several relative to the
non-dissipative run. In addition to studying individual
particle orbits, we can conduct a test of this idea based
on the global shape of the dark matter halo. If the oblate
spheroid shape of dark matter follows the shape of the
baryon disk, the orientation of the inner spheroid should
align with that of the disk, regardless of the orientation
of dark matter near the virial radius.

We define the z-orientation of the baryon disk as the

direction of the angular momentum of the gas plus stars
in a spherical shell between 1 and 2 kpc (physical) from
the center, JB,in, for each halo individually. We have
chosen to exclude the central 1 kpc region in order to
avoid possible complications due to the ill-defined angu-
lar momentum of the bulge component. The exact radial
range is not very important and similar ranges around
our choice give essentially the same result.

Figure 12 shows that the minor axis of the dark matter
distribution is almost perfectly aligned with the angular
momentum of the disk in the inner 4% of the virial ra-
dius (similar alignment was seen by Coĺın et al. 2006).
However the outer regions of the halo are twisted by 50◦

to 80◦ relative to the disk. We have confirmed that the
orientation of the outer halo is consistent with that in
the dissipationless run B. Therefore, it appears that near
the virial radius the dark matter halo retains the shape
and orientation set by the large-scale structure forma-
tion, while in the inner regions the halo is twisted almost
perpendicularly and aligned with the orientation of the
baryon disk.

This inner alignment is not just a passive response of
dark matter to the disk formation. Roškar et al. (2010)
show that fresh gas feeding the disk is strongly torqued
by the hot halo gas on its way into the galaxy center.
Since the hot gas must respond to the shape of the dark
matter halo, the mutual alignment is a simultaneous and
dynamic process.
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momentum ĴDM (dashed) of the dark matter at z ≈ 2.

The alignment of inner dark matter and stars is also
supported by the transformation of the halo velocity
anisotropy, from radial to mildly tangential at r <
0.1 r200b,A (see Figure 9).

This flattened, rotating configuration of dark matter
near the center resembles what Read et al. (2009) named
the “dark disk”. In the cosmological simulations of three
Milky Way-sized halos with the SPH code GASOLINE,
they found a flattened dark matter structure and at-
tributed its origin to the accretion of satellite halos along
the directions closely aligned with the stellar disk. Our
simulations similarly include all the cosmological accre-
tion history, with a factor of 5 higher dark matter mass
resolution. We do not see a clear thin disk of dark matter,
but rather a smooth oblate distribution near the center,
aligned with the stellar disk. Satellite halos lose most
of their mass by tidal stripping at larger radii and do
not contribute significantly to the inner regions near the
disk. Read et al. (2009) also note the flattening of their
halos, with a similar short axis axis ratio c/a ≈ 0.8. Thus
we agree on the shape and orientation of the inner halo,
but our simulations do not reveal any additional “dark
disk”. The shape of the inner dark matter distribution
is determined by the halo contraction, which we discuss
in Section 5, and not by accretion of satellites.

Our interpretation is also supported by the results of
Coĺın et al. (2006), who found that the growth of a galac-
tic bar within an isolated spherical halo led to the trans-
formation of the halo to the oblate shape corotating with
the bar. Their simulations did not include cosmological
satellite accretion but nevertheless found the alignment
effect similar to our result.

In a wider context, the alignment of the inner dark
matter halo is important for the long-term stability of
stellar disks. If the halo remained triaxial, it would scat-
ter stars off the plane of the disk and thus kinematically
heat the disk. An oblate, aligned inner halo is key to the
survival of thin stellar disks in CDM cosmology.

A similar picture emerges when studying the orien-
tation of the cumulative specific angular momentum of
dark matter, JDM. Near the center the directions of JDM
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Fig. 13.— Ratio of the enclosed mass within 2 kpc (physical) in
runs A and B. Lines are for the main halo. For the selected halo
sample at z ≈ 4, 3, and 2 (corresponding to cosmic times 1.7 Gyr,
2.3 Gyr, and 3.3 Gyr), we plot the median value and the error bars
denoting the 15th and 85th percentiles.

and JB,in are well aligned, but at the virial radius they

are separated by 47+50
−20 degrees. Such twisting is in ex-

cellent agreement with the AMR simulations of a sam-
ple of about 100 galaxies by Hahn et al. (2010), who
found the inner dark matter aligned with the stellar disk
to within 18◦, but the outer dark matter misaligned by
≈ 50◦. The gradual misalignment trend can also be seen
in the SPH simulations of Bett et al. (2010), although
they only probed it outside 0.25 r200b because of lower
particle numbers.

These results are also important for evaluating the
accuracy of semi-analytical models of galaxy formation
that often assume that the specific angular momentum of
baryons equals that of dark matter and is conserved dur-
ing the disk formation. At the virial radius the angular
momentum vectors of the baryons and the dark matter
are indeed approximately aligned (within 17+30

−10 degrees),
as was found previously in the SPH simulations of Bailin
et al. (2005) and in the AMR simulations of Kimm et al.
(2011). However, the memory of this orientation is com-
pletely erased near the disk. The value of the angular
momentum in the inner regions also changes for both
baryons and dark matter, as we discuss in Section 6.

5. RADIAL HALO CONTRACTION

As we have seen so far, baryon dissipation and conden-
sation near the center lead to a more concentrated dark
matter distribution (e.g. Zel’dovich et al. 1980; Barnes
& White 1984; Blumenthal et al. 1986; Ryden & Gunn
1987). In this section we describe this enhanced con-
centration by the modified model of halo contraction
(Gnedin et al. 2004, 2011b).

First, we note that the effect of halo contraction is a
robust outcome of our simulations, independent of any
interpretation using our contraction model. Figure 13
shows the increase of dark matter mass enclosed within
a fixed physical radius (2 kpc) compared to the non-
radiative case. The inner dark matter mass is consis-
tently enhanced, by a factor 3 to 6. Moreover, this en-
hancement increases steadily with time both for the main
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same mass enhancement factor relative to the SAC model: 100%,
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halo and in the median of all massive halos. In addition,
dissipation increases the total mass within 2 kpc, baryon
plus dark matter, by more than an order of magnitude.

Radial halo contraction can be accurately described
by the modified adiabatic contraction (MAC) model
(Gnedin et al. 2004), an extension of the standard adi-
abatic contraction (SAC) model of Blumenthal et al.
(1986). The SAC model is based on conservation of
the specific angular momentum profile of dark matter,
J2

DM(r) = GM(r)r. The MAC model is based instead on
conservation of the quantity M(r̄)r, where r̄ is the orbit-
averaged radius for particles currently located at radius
r:

[MB,i(r̄i) +MDM,i(r̄i)] ri = [MB,f (r̄f ) +MDM,f (r̄f )] rf .
(10)

Here MDM,i is the initial dark matter profile, MDM,f

is the final dark matter profile (and similar for the
baryons), and rf is the final radius of the dark matter
shell that was initially at ri. The model assumes that
contraction of the spherically averaged halo profile can be
described as a motion of spherical shells that do not cross
each other. This results in MDM,f (rf ) = MDM,i(ri).
Using the mass within the orbit-averaged radius r̄ ap-
proximately accounts for eccentricity of particle orbits in
cosmological structure formation simulations. The orbit-
averaged radius can be parametrized as

r̄

r0
= A0

(
r

r0

)w
. (11)

This power law relation reflects typical energy and ec-
centricity distributions of particles in halos. We take the
pivot radius to be r0 = 0.03 r200b,A, which Gnedin et al.
(2011b) showed to minimize the correlation of A0 and
w. The best-fit parameters A0 and w can vary from halo
to halo. The SAC model corresponds to A0 = 1 and
w = 1. The amount of contraction typically increases
with decreasing values of A0 and increasing values of w.
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Fig. 15.— Median ratio of the cumulative specific angular mo-
mentum squared of dark matter in runs A and B at z ≈ 2, for
the same amount of matter. JB is calculated at the radius rcorr
corresponding to the same enclosed dark matter mass as at r in
run A, i.e. MDM,A(r) = MDM,B(rcorr).

We use a modified version of the code Contra1 that
determines the best-fit values for A0 and w by compar-
ing the prediction to the measured dark matter profile
in the dissipational simulation. The fitting procedure is
described in Gnedin et al. (2011b).

Figure 14 shows the best-fit parameters for our selected
halos at z ≈ 2. The majority of the halos are clustered
around A0 ≈ 2.3, w ≈ 0.7, but some show substantial
scatter. For each individual halo, the MAC model pro-
vides an excellent fit of the dark matter profile, with the
median fractional mass error of 2.6% (averaged over all
bins). Overall, the level of contraction is weaker than
predicted by the SAC model, confirming the conclusion
of Gnedin et al. (2011b).

Dashed lines in Figure 14 illustrate the strength of halo
contraction in comparison to the SAC model. Let us de-
fine the mass enhancement ratio at radius r: FM (r) ≡
MDM,f (r)/MDM,i(r). Each line corresponds to a fixed
fraction of this enhancement factor relative to its value in
the SAC model: fM (r) ≡ FM (r|A0, w)/FM (r|1, 1) = 1,
0.5, and 0.3, respectively. The radius at which these frac-
tions are evaluated is r = 0.005 r200b,A, near our resolu-
tion limit. For most of the halos, the mass enhancement
factor at this radius is 30% to 60% of the value expected
in the SAC model.

Figure 14 also shows the evolution of the main halo
over time in the space of the model parameters. It starts
with relatively strong contraction, reaches a peak value
around the cosmic time 1.3 Gyr, recedes until 1.8 Gyr,
then reaches another peak, and finally settles into a
quasi-steady state at A0 ≈ 2.4, w ≈ 0.5. The two bouts
of strongest contraction (when w is highest and A0 is low-
est) do not correspond to the epoch of the peak of star
formation following a major merger around t ≈ 1.6 Gyr.
Instead, the first bout precedes the merger and the sec-
ond happens after the system reaches new dynamical
equilibrium. The exact correlation with the dynamical
state is not straightforward or very strong. At lower
redshift the contraction effect stabilizes and is still sig-

1 http://www.astro.lsa.umich.edu/~ognedin/contra/

http://www.astro.lsa.umich.edu/~ognedin/contra/
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from Figure 17.

nificant.

6. EVOLUTION OF THE ANGULAR MOMENTUM
OF DARK MATTER

The structure of the halo is affected by the evolution of
its angular momentum. We find that baryon dissipation
dramatically affects the angular momentum profile of the
inner halo.

At a fixed radius, the total angular momentum LDM

(and the specific angular momentum per unit mass, JDM)
increases with time simply because more mass accumu-
lates as the gas falls in and halo contracts. However, in
the idealized scenario of particles on circular orbits and
spherical shells that do not cross, the angular momen-
tum of each lagrangian shell with enclosed mass MDM is
conserved, J2

DM(MDM) = GM(r)r = const. As the en-
closed baryon mass increases, the shell moves inward but
retains the angular momentum profile JDM(MDM). This
is a test of the foundation of the halo contraction model.
In this section we consider the evolution (in time and
between the runs A and B) of the angular momentum
of the same spherical shells, that is, the same enclosed
amount of material.

Relative to the dissipationless case, the inner dark mat-
ter shells gain a lot of angular momentum. Figure 15
shows that the median value of J2

DM(MDM) is greater by
as much as a factor of 10 near the center, compared to the
angular momentum of the same dark matter mass in run
B. The variance between different halos is large, reflect-
ing their different formation histories. A similar change
of the dark matter angular momentum was also seen in
the SPH simulation of Bett et al. (2010) at 0.1 rvir, the
innermost radius they considered.

To further illustrate this effect, we show in Figure 16
the change of the total angular momentum explicitly as
a function of the enclosed mass fraction for both dark
matter and baryons. In run A the inner 3% of baryons
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Fig. 17.— Evolution of the cumulative angular momentum of
the dark matter and baryons in the main halo within a radius that
contains a constant mass. The constant mass for each species was
chosen as the enclosed mass within 2 kpc (physical) of the halo at
z ≈ 4 in run A. At z ≈ 2 it corresponds to 32.5% of the baryon
mass and 2.39% of the dark matter mass (see also marked circles
in Figure 16).

lose most of the angular momentum (≈ 90%) that they
had in run B. The loss is significant throughout the whole
halo, out to the virial radius. In contrast, the inner 10%
of dark matter gain angular momentum. Part of this
gain may be due to modification of particle orbits near
the baryon disk. Another part may be due to the low-
JDM particles being replaced by the high-JDM particles
from larger radii as a result of mergers and fluctuations of
the potential, as first suggested by Valenzuela & Klypin
(2003). Finally, some of the effect may be due to the
transfer of angular momentum from the baryons to the
dark matter.

However, the comparison between the two runs is
masking a strong temporal evolution in the angular mo-
mentum profile in each simulation. A fixed amount of
material of both baryons and dark matter, in both runs,
systematically loses the angular momentum in the inner
galaxy. Figure 17 shows this evolution in the main halo
for the shell containing 2.39% of the dark matter mass
and 32.5% of the baryon mass at z ≈ 2 (it has radius
of ≈ 1.5 kpc (dark matter) and ≈ 0.5 kpc (baryons), re-
spectively, at that epoch). The sharpest drop of LB, by
a factor of 2, is around the cosmic time of 1.6 Gyr. This
epoch corresponds to a major merger event, when even
the mass within the inner several kpc increases notice-
ably. It causes also the largest burst of star formation
in this galaxy, with the rate exceeding 100 M� yr−1. It
has been known since the work of Vitvitska et al. (2002)
that the spin of the halos decreases after mergers. A
non-negligible fraction of particles near the center gains
enough energy to move outside the virial radius (e.g.,
Kazantzidis et al. 2006). Later, D’Onghia & Navarro
(2007) showed that out-of-equilibrium halos have, on av-
erage, higher spin than relaxed systems, suggesting that
the post-merger virialization process leads to a net de-
crease in the halo spin. Our results show that this effect
may operate even at radii as small as a few kpc, where
the high-JB gas moves to larger radii and leaves the re-
maining baryons with much lower angular momentum.
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Fig. 18.— Angular momentum profiles of the dark matter shells
in the main halo. For each radius r at z ≈ 2 we matched the same
enclosed mass at previous epochs. Solid lines are for run A, dashed
lines are for run B.

Figure 17 shows that without baryon dissipation, the
enclosed LDM(MDM) of a fixed dark matter mass MDM

also decreases with time. In contrast, as a result of gas
cooling and star formation in run A, the angular mo-
mentum of the same mass, LDM(MDM), remains rela-
tively constant over time. This inner region contains a
much larger fraction of baryon mass than dark matter
mass, and therefore baryons carry much higher total en-
closed angular momentum, LB � LDM. The lost baryon
angular momentum is more than enough to feed the an-
gular momentum of the inner dark matter. Note that
this result implies that at a fixed physical radius LDM(r)
increases over time, because the enclosed mass MDM(r)
increases as the halo contracts.

The remarkable constancy of the angular momentum
in run A extends to all dark matter shells out to ≈
0.1 r200b,A. Figure 18 shows that the inner angular mo-
mentum profile has decreased by less than 10− 20% be-
tween z ≈ 4 and z ≈ 2. At higher z > 4, when the central
baryon accumulation was dynamically insignificant, the
inner LDM(MDM) was fluctuating by a larger amount.
Since z ≈ 4, the dense stellar bulge and disk have sta-
bilized the gravitational potential and helped maintain
a very constant angular momentum profile of the dark
matter shells. In contrast, the inner LDM(MDM) of dark
matter in the non-radiative run B decreased overall by a
factor of several.

Did baryons transfer just enough angular momentum
to inner dark matter to balance the loss due to mergers?
Details of the angular momentum evolution still need to
be investigated in future studies, but the overall effect il-
lustrated in Figure 18 is new and significant. The angular
momentum profile of inner dark matter shells is fortu-
itously constant in the region dominated by the baryons,
at least to the final epoch of our simulation. This ef-
fect lends strong support to the underlying equation in

the models of halo contraction. In addition, the radial
mixing and eccentricity of particle orbits strengthen the
motivation for using the MAC model, which is based on
even more robust conservation of the radial action.

7. DISCUSSION

7.1. Comparison with observations

At the moment there are only a few observational con-
straints at high redshift. van Dokkum et al. (2009) re-
port on a massive compact galaxy at redshift z = 2.2
with the stellar mass around 2×1011 M� and the line-of-
sight velocity dispersion of 510+165

−95 km s−1. Converting
this one-dimensional dispersion to the three-dimensional
dispersion with the factor

√
3 gives roughly 900 km s−1.

Our most massive halo in run A at z ≈ 2 has total stellar
mass of 1.2×1011 M� and a stellar 3D velocity dispersion
around 725 km s−1 (at 0.005 r200b,A). It is reasonably
consistent with the observed analogue.

Koopmans et al. (2009) determine the inner slope of
the total matter density for a sample of galaxies from the
Sloan Lens ACS (SLACS) survey. They report an essen-
tially constant slope γ = 2.09+0.03

−0.02 in the inner region
(0.2− 1.3Re) in the redshift range z ≈ 0− 0.4. The me-
dian slope for our galaxies is γ ≈ 2.5 in the same region
(Figure 4) and it does not change substantially between
z ≈ 4 and z ≈ 2. In this inner region most of the gas has
already been converted into stars, which dominate the
central mass (Figure 5). If the inner density slope does
not decrease at z < 2, as may be expected for collision-
less systems which preserve the steepest density profile
during a merger (e.g., Dehnen 2005; Kazantzidis et al.
2006; Zemp et al. 2008), then our simulated galaxy pro-
files would be too steep. However, continuous star forma-
tion and accretion of satellites may decrease the central
concentration and build up the extent of the stellar disk,
thus reducing the overall density slope. The mass profile
of the lensing spiral galaxies will soon be available from
the new multi-band SWELLS survey (Treu et al. 2011).

If we fit an exponential profile to each stellar disk of
our selected objects at z ≈ 3 in the range between 1
and 3 kpc, we obtain a median exponential scale length
Rd = 470+120

−65 pc. Since the stellar profiles are not strictly
exponential, a more robust measure of the stellar distri-
bution is an effective half-mass effective radius, which we
find to beRe = 800+200

−110 pc. This size in reasonable agree-
ment (and even larger) with Rafelski et al. (2011), who
found an effective radius Re ≈ 600 pc for their stacked
sample of Lyman break galaxies at z ≈ 3 in the same
radial range. Our size also agrees with the Keck/OSIRIS
integral field spectroscopy study of 12 star-forming galax-
ies at z ≈ 2−3 by Law et al. (2009), who found the radii
of ionized nebula emission between 0.6 and 1.6 kpc. How-
ever, Förster Schreiber et al. (2009) found substantially
larger effective radii of the Hα emitting region (between
1 and 8 kpc) in their study of 80 star-forming galaxies
at z ≈ 1 − 3.5 using VLT/SINFONI integral field spec-
troscopy. We will discuss the detailed structure of the
disks in our galaxies in a future publication.

Malhotra et al. (2011) showed that the half-light size
of Lyman-α emitting galaxies does not change between
redshift z ≈ 6 and z ≈ 2 (Re ≈ 1 kpc) in contrast with
the sizes of the Lyman-break galaxies which are increas-
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ing over the same period by a factor of 3. While both
types of galaxy are actively star forming, the Lyman-α-
selected objects are typically younger, relatively less mas-
sive, and less evolved chemically. The sizes of our simu-
lated galaxies are consistent with the Lyman-α emitters.
Since Lyman-breaks are picking moderate-aged stars, it
is an indication that the size of stellar disks/bulges sys-
tematically increases with cosmic time.

7.2. Comparison with simulations

The problem of a very concentrated stellar distribu-
tion is prominent in most simulations of galaxy formation
(e.g. Governato et al. 2007; Scannapieco et al. 2009; Stin-
son et al. 2010), although two recent SPH simulations
seem to have overcome this by using very strong feedback
with a supernova blastwave and applying a high star for-
mation density threshold, for a dwarf galaxy (Governato
et al. 2010) and a large galaxy (Guedes et al. 2011). For
example, Governato et al. (2010) had gas cooling shut
off in a region of 0.1 − 0.3 kpc in radius for 5 − 10 Myr
after the supernova explosion, where most of the energy
is lost radiatively in our simulations.

Joung et al. (2009) performed cosmological simulations
of galaxies at z = 3 with the AMR code Enzo. Their
simulated galaxies are in a similar mass range to our
sample and also show very centrally concentrated stellar
profiles, despite substantially different treatment of gas
physics and star formation. We have also checked that in
our simulations the dense stellar core was already built
up at earlier epochs, at least at z = 5. Joung et al.
(2009) suggested possible ways around this problem: an
early reionization to suppress gas condensation; a very
strong feedback from stars or central black holes to re-
duce overall star formation; or a small-scale cutoff in the
primordial fluctuation power spectrum.

However, Agertz et al. (2011) was able to form a more
extended disk galaxy at z = 0 using the AMR code
RAMSES. They performed a parameter study with the
star formation efficiency per free-fall time varying be-
tween εff = 0.01 and 0.05, and found that decreasing
εff led to a less concentrated stellar distribution, despite
smaller stellar mass and weaker feedback. We use an
even smaller star formation efficiency (εff = 0.007) but
find steeper stellar profiles. This discrepancy is probably
due to a combination of two effects. First, the Agertz
et al. (2011) simulation has lower spatial resolution (340
pc vs. 90 pc in our run A at z = 2) and forms stars
based on the total gas density rather the molecular hy-
drogen density, and at much lower density than in our
case. Molecular hydrogen naturally forms only at high
gas density and therefore in our simulations star forma-
tion takes place in systematically more concentrated re-
gions (see also Figure 1). For any given feedback model,
the feedback is less efficient in our simulations. Second,
Agertz et al. (2011) analyze the stellar disk at z = 0, as
opposed to z ≈ 2 in our case. The high-redshift disks are
expected to grow gradually in size and may become less
concentrated by the present epoch.

8. SUMMARY

We have presented a study of the impact of baryon
physics on the matter distribution in galaxy formation
simulations. An important new feature of our simula-

tions is the modeling of the physics of molecular hydro-
gen and the star formation prescription based on the lo-
cal molecular hydrogen density and not on the total gas
density. We investigated the properties of the most mas-
sive halos with M200b ≥ 1011 M� to redshift z ≈ 2, using
three simulations of the same cosmological volume that
differ by the included gas physics and stellar feedback.

The main conclusions of this work are:

• The spatial distribution of the molecular gas, and
the stars that form from it, is very compact. The
median half-mass size of the stellar disks is 0.8 kpc
at z ≈ 3. The molecular disk is much thinner than
the distribution of the neutral atomic gas.

• Compared to the matching dissipationless run, the
inner regions of the dark matter halo change shape
from prolate to oblate and align with the orienta-
tion of the stellar disk. This alignment of the inner
halo is important for the long-term stability of the
thin stellar disk.

• Despite the alignment, the inner halo is only mildly
oblate: the short-to-long axis ratio is c/a ≈ 0.8.
We do not detect a “dark disk” of comparable thin-
ness to the stellar disk.

• The radial profile of the dark matter halo contracts
in response to baryon dissipation. In the inner
10% of the virial radius, the logarithmic slope of
the dark matter density profile is constant, γ ≈ 2.
Halo mass within the inner 2 kpc is consistently
enhanced in all galaxies, by a factor of 3 to 6. The
mass enhancement increases steadily with time.
The modification of the halo profile is accurately
described by the modified model of halo contrac-
tion.

• Baryon dissipation affects the structure of the dark
matter halo far outside the extent of the stellar
disk. The enclosed mass is enhanced by ≈ 40% at
0.2 r200b. The halo concentration is also signifi-
cantly increased relative to the non-radiative case.
The halo velocity distribution is consistent with be-
ing isotropic throughout the whole halo.

• The pseudo phase-space density profile of dark
matter is not universal and cannot be described by
a single power law. In the inner region dominated
by stars, the phase-space density is reduced by an
order of magnitude relative to the dissipationless
case.

• In the non-radiative run, a fixed amount of inner
dark matter loses most of its angular momentum
between z = 5 and z = 2. This angular mo-
mentum is transferred outward during major merg-
ers and potential fluctuations. In contrast, in the
galaxy formation run the specific angular momen-
tum of dark matter is approximately constant in
time, while the baryons lose most of theirs. Some
of the baryon angular momentum is transferred to
the inner dark matter, helping to offset the loss
during major mergers. The approximate conserva-
tion of the dark matter angular momentum may
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explain why the halo contraction model describes
the modification of the halo profile so well, despite
the simplicity of the model and complexity of the
galaxy formation process.

MZ, OYG, NYG, and AVK are supported in part by
NSF grant AST-0708087. The simulations and anal-
ysis in this work have been performed on the Joint

Fermilab-KICP Supercomputing Cluster (supported by
grants from Fermilab, Kavli Institute for Cosmological
Physics, and the University of Chicago) and the Legato
and Flux clusters at the University of Michigan. This re-
search has made use of NASA’s Astrophysics Data Sys-
tem (ADS), the arXiv.org preprint server, the visualiza-
tion tool VisIt, the computer algebra system Maxima,
and the Python plotting library Matplotlib.

APPENDIX

PROFILING ROUTINE

In order to determine the properties of simulated galaxies, we have built a profiling routine that takes the phase-
space coordinates from any halo finder as input. If necessary, the routine can recenter the phase-space coordinates of a
galaxy through a shrinking sphere method (Power et al. 2003). The profiling routine then creates a radial grid between
the specified boundaries rgridmin and rgridmax. The inner boundary is set by the resolution scale of the simulation,
and we chose a value of rgridmin = Lbox/(256 · 500) = 512/500L9 = 286 pc (comoving). The outer boundary is set
individually for each halo based on an estimate of the virial radius r200b,i of halo i. Here we set rgridmax,i = 5 r200b,i.
For the binning, we specify a number of bins per dex in radius. This has the advantage that it is adaptive to the size
of the individual objects: larger objects will have more bins than smaller objects. It is also more memory efficient
than using the same number of bins for all objects. Additionally, one can choose appropriate binning depending on
the resolution of the simulation. For the analysis presented in this paper we chose 15 bins per dex in radius.

In order to reduce the memory load of the profiling routine, we read only parts of data at once: generally 107

particles or cells. This allows us to analyze even biggest simulations on a desktop computer with a reasonable amount
of memory. Also, the halo catalog can be split up, although it is not needed in most cases. In order to speed up the
assignment of particles into the bins, we use a chaining mesh method and linked list data structures (e.g. Hockney &
Eastwood 1988). By choosing the chaining mesh size of the order of the (largest) halo size in the simulation, we only
need to check particles in the neighboring mesh cells of a halo for being within rgridmax of that halo.

The profiling routine calculates radial profiles for each individual matter species as well as for the total matter
distribution. By searching for a maximum in the circular velocity curve on the grid we determine rmax and M(rmax).
As a quality check for a true maximum, we require that the circular velocity is smaller than the candidate maximum
value everywhere within the extended region fcheckrmax. Here we use fcheck = 1.5.

The mass density profile of subhalos typically shows an uprise at large distances from their center due to the inclusion
of host halo particles. We can estimate a truncation radius for subhalos by first finding where the slope γ of the enclosed
density profile becomes shallow enough. We take the maximum truncation radius defined by γ(rtruncmax) = −0.5. Using
the enclosed average mass density has the advantage that it is much smoother than the local density profile. From
rtruncmax we then go inward in radius and find the minimum local density. The location of the minimum local density
is used as the truncation radius rtrunc. Assuming that the background density of the host halo at the location of the
subhalo is given by ρ(rtrunc), we can remove this background density and calculate the subhalo mass M(rtrunc) and
the circular velocity curve.
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